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Abstract 

In this study, the application of Artificial Neural Networks (ANN) and Multiple Regression analysis 

(MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using 

lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors.  

The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR 

Models is proposed to investigate the simultaneous effect of past values of these two major climate 

modes on long-term spring rainfall prediction. The MR models that did not violate the limits of 

statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN 

was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR 

and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error 

(MAE), Pearson correlation (r) and Willmott index of agreement (d).The developed MR and ANN 

models were tested on out-of-sample test sets; the MR models showed very poor generalization ability 

for east Victoria with correlation coefficients of -0.99~ -0.90   compared to ANN with correlation 

coefficients of 0.42~0.93; ANN models also showed better generalization ability for  central and west 

Victoria with correlation coefficients of 0.68~0.85 and 0.58~0.97 respectively. The ability of multiple 

regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central 

Victoria and Kaniva in west Victoria (r=0.92 and 0.67 respectively). The errors of the testing sets for 

ANN models are generally lower compared to multiple regression models. The statistical analysis 

suggest the potential of ANN over MR models for rainfall forecasting using large scale climate 

modes. 

Keywords: rainfall, ENSO, IOD, ANN, multiple regression 

1. Introduction 

Rainfall is final result of complex global atmospheric phenomena and long-term prediction of rainfall 

remains a challenge for many years. An accurate long-term rainfall prediction is necessary for water 

resources management, food production and maintaining flood risks. Several large scale climate 

phenomena affect the occurrence of rainfall around the world; of these large scale climate modes El 
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Nino southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are well known for their effect on 

India, North and South America and Australia. Many studies have tried to establish the relationship 

between these climate modes for daily, monthly and seasonal rainfall occurrence around the world 

(Barsugli and Sardeshmukh, 2002; Chattopadhyay et al., 2010; Hartmann et al., 2008;  Lau et al., 

2001; Shukla et al., 2011; Yufu et al., 2002).  This study is motivated by the need to better understand 

the effect of these climate modes on future seasonal spring rainfall in Victoria, located at southeast 

Australia (Figure 1). Many past researches have tried to find a relationship between these large 

climate modes and southeast and east Australian rainfall (Murphy and Timbal, 2008; Verdon et al., 

2004), however seasonal rainfall predictability is estimated at an upper limit of only 30% for this 

region. In the work of Murphy and Timbal (2008) the maximum correlation of 0.37 was obtained for 

spring rainfall and spring NINO4. Compared to other states of Australia, e.g. Western Australia, New 

South Wales and  Queensland, this predictability is very low (Murphy and Timbal, 2008;Ummenhofer 

et al., 2008; Verdon et al., 2004). 

The majority of these studies did not consider the effect of lagged climate modes on future seasonal 

rainfall predictions. According to Schepen et al., (2012) a strong relationship between simultaneous 

climate modes and rainfall does not essentially mean that there is a lagged relationship as well. Of the 

few studies focusing on the lagged climate –rainfall relationship one can mention Abbot and 

Marohasy (2012), Drosdowsky and Chambers (2001),  Kirono et al., (2010), and Schepen et al., 

(2012).  Kirono et al., (2010) considered the relationship between Australian rainfall and two months 

average large scale climate indicators. Abbot and Marohasy (2012) also used past values of climate 

indices, monthly historical rainfall data and atmospheric temperature for monthly and seasonal 

forecasting of rainfall in Queensland, Australia; however the climate indices they used were limited to 

Southern Oscillation Index (SOI), Dipole Mode Index (DMI), Pacific Decadal Oscillation (PDO) and 

a sea surface temperature based index of ENSO (NINO3.4) lagged by 1~2 months. Schepen et al., 

(2012) used a Bayesian joint probability modeling approach for seasonal rainfall prediction; however 

their results were to some extent different from Kirono et al., (2010). 
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It is already established by many researchers that the changes of sea surface temperature (SST) and 

sea level pressures (SLP) in Pacific and Indian Ocean which result in the occurrence of ENSO and 

IOD cycles have enormous effect on the pattern, intensity and the amount of rainfall around the 

world, but how these changes are related to predicting future rainfall is still not clear. Since these two 

large modes of climate both contribute to climate patterns and especially rainfall creation, thus, the 

objective of this study is to investigate the relationship of combined ENSO and IOD lags on 

Victoria’s spring rainfall, as a case study. To achieve this objective two different methods have been 

investigated; Multiple regression analysis (MR) which is a linear technique and Artificial Neural 

Networks (ANN) which is a nonlinear method.  Three regions in Victoria, each having three rainfall 

stations is chosen as the case study. Model outputs were aimed to be deterministic forecast as opposed 

to probabilistic forecast.  

2. Methods and data 

2.1 Data 

Historical monthly rainfall data was obtained from the Australian Bureau of Meteorology website 

(BOM) (www.bom.gov.au/climate/data/).Three different regions were considered in this study: west 

Victoria, central Victoria and east Victoria; for each region three stations were selected (Figure.1). 

The stations were chosen based on their recorded length of data and having fewer missing values.  

Spring (September - November) rainfalls in millimeters were obtained from monthly rainfall data 

from January 1900 to December 2009.  

El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) were chosen as rainfall drivers 

based on the previous studies (Kirono et al., 2010; Meneghini et al., 2007; Risbey et al., 2009). ENSO 

is represented by two different types of indicators: the Southern Oscillation Index (SOI) which is a 

measure of Sea Level Pressure (SLP) anomalies between Darwin and Tahiti; and the Sea Surface 

Temperature (SST) anomalies in equatorial Pacific Ocean noted as Nino3 (5
o
S – 5

o
N, 150

o
– 90

o
W), 

Nino3.4 (5
o
 S – 5

o
N, 170

o 
– 120

o
W) and Nino4 (5

o
S – 5

o
N, 160

o 
– 150

o
W) (Risbey et al., 2009). 

Nino3.4 and SOI which are the common indices in identifying El Nino/ La Nina years are used as 

ENSO indicators in this study. IOD is also a coupled ocean-atmosphere phenomenon in the equatorial 

http://www.bom.gov.au/climate/data/
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Indian Ocean (Saji et al., 1999). A measure of IOD is the Dipole Mode Index (DMI) which is the 

difference in average SST anomalies between the tropical Western Indian Ocean (10
o
S - 10

o
N, 5

o
O - 

70
o
E) and the tropical Eastern Indian ocean (10

o
S - Equator, 90

o
 - 110

o
E) (Kirono et al., 2010). The 

climate indices data were obtained from Climate Explorer website (http://climexp.knmi.nl/). 

The data were divided in to two sets, from 1900-1990 for calibration and from 1991-2006 for 

validation of the models. Three years 2007-2009 were selected as the out-of-sample set to evaluate the 

generalization ability of the developed models. The data were normalized between the range of 1 and 

0 using Eq. (1).  

 

           (1) 

The models were evaluated using Mean square error (MSE), Mean Absolute Error (MAE), and 

Pearson correlation (r) which are widely used for prediction purposes; the models were further 

assessed using Willmott index of agreement (d) (Eq. 2) 

                                                         (2) 

where,   is the predicted value of the ith observation and  is the ith observation. The closer the (d) 

is to one the better the model has fitted the observations (Willmott 1982) 

 

2.2 Multiple Regression Analysis (MR) 

Multiple regression analysis (MR) is a linear statistical technique that allows for finding the best 

relationship between a variable (dependent, predicant) and  several other variables (independent, 

predictor) through the least square method. Multiple regression models can be presented by the 

following equation: 

Y=a + b1X1 + b2X2+c                      (3) 

where, Y is the dependent variable (spring rainfall), X1 and X2 are first and second  independent 

variable respectively (lagged ENSO and IOD indicators), b1 and b2 are   model coefficients of first and 

second  independent variable respectively, a is constant, and c is  the error.  

http://climexp.knmi.nl/
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It is important to evaluate the goodness-of-fit and the statistical significance of the estimated 

parameters of the constructed regression models; the techniques commonly used to verify the 

goodness-of-fit of regression models are the hypothesis testing, R-squared and analyse of the 

residuals. For this purpose the F-test is used to verify the statistical significance of the overall fit and 

the t-test is used to evaluate the significance of the individual parameters; The latter one tests the 

importance of individual coefficients where the former one is used to compare different models to 

evaluate the model that best fits the population of the sample data (Um et al., 2011). 

Verifying the multicollinearity is also an important stage in MR modeling; Multicollinearity occurs 

when the predictors are highly correlated which will result in dramatic change in parameter estimates 

in response to small changes in the data or the model. The indicators used to identify multicollinearity 

among predictors are tolerance (T) and variance inflation factor (VIF): 

                                    (4) 

where,  is the coefficient of multiple determination :  

                        (5) 

where,  SST is the total sum of squares, SSR is the regression sum of squares and SSE is the error sum 

of squares.  According to Lin (2008) a tolerance of less than 0.20–0.10 or a VIF greater than 5–10 

indicates a multicollinearity problem. 

Analysing the pattern of residuals is another method of evaluating the goodness-of-fit of the models. 

If any autocorrelation exists among the residuals then the models have not captured all the 

relationship there is between the inputs and the output; The criterion that can evaluate this is the 

Durbin-Watson  test (DW) which tests for serial correlations between errors. The test statistics have a 

range of 0 to 4, according to Field (2009) values less than 1 or greater than 3 are definitely matter of 

concern. 
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2.3 Artificial Neural Networks (ANN) 

Many probabilistic and deterministic modeling approaches have been used by hydrologist and 

climatologist in order to capture rainfall characteristics. Conceptual and physically based models 

require an in depth knowledge of this complex atmospheric phenomena; these models need a large 

amount of calibration data and they have to deal with over parameterisation effect and parameter 

redundancy impact (De Vos and Reintjas, 2005). Artificial Neural Networks (ANN) is a mathematical 

model that has the ability to find the nonlinear relationship between input and output parameters 

without the need to solve complex partial differential equations (Yilmaz et al., 2011). ANN has been 

used in many hydrological and meteorological applications; It has been used for rainfall-runoff 

modelling (Akhtar et al., 2009; Chiang and Chang, 2009; Chiang et al., 2004; De Vos and Rientjes, 

2005; Sudheer et al., 2002; Tokar and Johnson, 1999) for streamflow forecasting (Campolo et al., 

1999; Firat and Gungor, 2007; Kisi, 2007; Riad et al., 2004; Turan and Yurdusev, 2009) and for 

ground water modelling (Coulibaly et al., 2001; Daliakopoulos et al., 2005; Rogers and Dowla, 1994). 

It has also been used for many cases of rainfall forecasting (Hsu et al., 1995; Luk et al., 2001; 

Mekanik et al., 2011; Rami’rez et al., 2005; Toth et al., 2000). 

ANN has been inspired by biological neural networks; it consists of simple neurons and connections 

that process information in order to find a relationship between inputs and outputs. The most common 

ANN architecture used by hydrologist is the Multilayer Perceptrons (MLP) which is a  feedforward 

network that consists of three  layers of neurons, the input layer, the hidden layers and the output layer 

(Figure 2).  The number of input and output neurons is based on the number of input and output data; 

The input layer only serves as receiving the input data for further processing in the network. The 

hidden layers are a very important part in an MLP since they provide the nonlinearity between the 

input and output sets. More complex problems can be solved by increasing the number of hidden 

layers or the hidden neurons in the hidden layers. The output neuron is the desired output of the 

model. The process of developing an ANN model is to find a) suitable input data set, b) determine the 

number of hidden layers and neurons, and c) training, validating and testing the network. 

Mathematically, the network depicted in Figure. 2 can be expressed as follow: 
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         (6) 

where,   is the output of the network,   is the input to the network, and   are the weights 

between neurons of the input and hidden layer and between hidden layer and output respectively;    

and  are the activation functions for the hidden layer and output layer respectively. According to 

Maier and Dandy (2000) if extrapolating beyond the range of the training data is needed it is 

recommended to use sigmoiadal-type transfer functions in the hidden layers and linear transfer 

functions in the output layer. In this study  is considered tansigmoid function which is a nonlinear 

function and    is considered the linear purelin function defined as follow: 

           (7) 

             (8) 

The ANN models were  trained based on Levenberg-Marquardt algorithm; number of hidden neurons 

was chosen based on constructive algorithm. In ANN modeling there is always the chance of having 

an over fitted model. To avoid this problem in this study early stop technique is applied while training 

and validating the models. Through using this method, the network stops the training when the error 

over the validation set starts to increase while the error over training set is still decreasing; In this way 

the network avoids over fitting (Luk et al., 2000; Sarle, 1995). 

3 Result and Discussion 

3.1 Multiple Regression models 

In this study the ability of El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) past 

values to forecast future spring rainfall was analysed using multiple regression analysis (MR). 

According to Lim et al., (2010) ENSO and IOD have a strong influence in the austral spring on 

eastern and southern Australia. Cheiw et al., (1998) also suggest that ENSO indicators can be used to 

some extent to forecast spring rainfall in eastern Australia; They found that the highest correlation 

between rainfall and climate indicators are obtained using SOI and SST values averaged over two or 
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three months. On the other hand, Verdon et al., (2004) indicate that the influence of ENSO in Victoria 

(southeast Australia) appears to be weak. 

In this study correlation between spring rainfall at year n and Decn-1-Augn monthly values of ENSO 

and IOD indicators (Nino3.4, SOI and DMI) were calculated (“n” being the year for which spring 

rainfall is being predicted); It was discovered that only the three months of June, July and August of 

Nino34, SOI and DMI have significant correlation with spring rainfall (Table1); This result is in 

accordance to the findings of Cheiw et al., (1998) and Verdon et al., (2004), substantiating that not 

only  the highest correlations between rainfall and climate indicators are obtained up to three month 

lags i.e. there is no further significant relationship after lag 3; also these correlations are very weak for 

Victoria (|rmax|=0.30 for east Victoria, |rmax|=0.39 for central Victoria and |rmax|=0.36 for west Victoria).  

ENSO-IOD input sets were organized based on these months as potential predictors of spring rainfall 

for multiple regression analysis (Table2). F-test and t-test was conducted to evaluate the significant 

level of the models and the regression coefficients; among the constructed models the ones that did 

not violate the limits of statistical significance was selected, the models with lower error were chosen 

as the best model for each station. The regression coefficients, variance inflation factor (VIF), Durbin-

Watson statistics (DW) and the Pearson correlation (r) of the best models are shown in Table 3. It can 

be seen from this Table that VIFs for the selected models are near one, i.e. there is no multicolinearity 

among the predictors; also, the DW statistics is showing that the residuals of the models have no 

autocorrelation confirming the goodness-of-fit of the models.  Nino34-DMI based models proved to 

be statistically significant and  having better forecasting ability than SOI-DMI models for Victoria, 

with a maximum Pearson r of 0.35 for east Victoria, 0.37 for central Victoria and  0.39 for west 

Victoria. It is important to note that  models with two/three months combined inputs such as 

Nino34(Jun-Jul-Aug)-DMI(Jul-Aug) with different combination of months were  also developed, however 

these high lagged models were all found to be not statistically significant in anyway and were all  

discarded.  

Table 4 shows the MSE, MAE and Pearson correlation (r) of the best MR models for the three 

regions. It can be seen from Table 4 that the errors are relatively low for all the stations.   
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3.2 ANN models 

As discussed in Section 3.1, the strongest, statistically significant relationship between spring rainfall 

and climate indicators occur in the months of June, July and August (Table 1); due to the statistical 

limits of MR analysis the three months of June, July and August of ENSO and IOD could not be 

incorporated together in one single model and had to be separated in order to obtain statistically 

significant models. ANN is free from these assumptions and thus it is capable of taking ENSO (Jun-July-

Aug)-IOD (Jun-July-Aug) sets as inputs for predicting future rainfall. Two sets of Nino3.4 (Jun-July-Aug)-DMI (Jun-

July-Aug) and SOI (Jun-July-Aug)-DMI (Jun-July-Aug) were used as inputs for developing ANN models for the 

three regions. Table 5 summarises the prediction skills of these models regarding MSE, MAE  and 

Pearson correlation (r); it can be seen from Table 5 that the correlation coefficients of ANN models 

for east and west Victoria is significantly higher compared to the MR models (Table 4) and the errors 

(MAE and MSE) are generally lower. Also for central Victoria, the correlation coefficients are 

generally higher than the MR models; however the performance of the MR models regarding MSE 

and MAE is better for this region. The higher correlation coefficient of ANN models indicate that 

ANN is more capable of finding the pattern and trend of the observations compared to MR models. 

After calibrating and validating the models, in order to evaluate the generalization ability of the 

developed MR and ANN models, out-of-sample tests were carried out on the years 2007-2009 (Table 

6). It can be seen that MR models are showing very poor generalization ability for east Victoria, (r = -

0.99, -0.90 and -0.99 for Bruthen, Buchan and Orbost respectively) compared to ANN with 

correlation coefficients of 0.93, 0.76 and 0. 42; ANN models also showed better generalization ability 

for  central and west Victoria with correlation coefficients of 0.68~0.85 and 0.58~0.97 respectively 

compared to MR models, however the ability of MR models to forecast  out-of-sample sets is 

compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r=0.92 and 0.67 

respectively). Also the errors of the testing sets for ANN models are generally lower compared to 

multiple regression models.  
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Figures 3 to 5 show comparisons between multiple regression and ANN models for the 9 stations.  In 

general regression models are showing an underestimation of the actual observations compared to 

ANN models. While Pearson correlation shows how well the models are following the trend of the 

actual observations, Willmott index of agreement “d” shows how well the models are fitting the 

observations. This index is tabulated in Table 7 for multiple regression and ANN models; the closer 

the value of “d” is to one the better is the model accuracy. It can be seen from this table that ANN 

models are having higher “d” values compared to MR models.  

4. Conclusion 

This study focused on investigating the use of combined lagged El Nino Southern Oscillation (ENSO) 

and Indian Ocean dipole (IOD) as potential predictors of spring rainfall. Multiple regression (MR) and 

Artificial Neural Network (ANN) approach was used for this purpose. Three regions (east, centre and 

west) of Victoria were chosen as case study each having three rainfall stations. Nino3.4 and Southern 

Oscillation Index (SOI) were used as ENSO indicators and Dipole Mode Index (DMI) was chosen as 

IOD indicator.  

The Pearson correlation coefficients of past values of the climate indices with spring rainfalls for the 9 

stations were calculated; It was discovered that only the three months of June, July and August of 

Nino34, SOI and DMI have significant correlation with spring rainfall and these correlations are very 

weak. Nino3.4-DMI and SOI-DMI input sets were organized based on these months as potential 

predictors of spring rainfall for MR analysis. Among the several developed models the ones that did 

not violate the limits of statistical significance and multicollinearity and had lower model error were 

used for prediction purposes. 

ANN modelling was also conducted for the 9 stations of Victoria using the combined lagged Nino3.4-

DMI and SOI-DMI. Multilayer Perceptron (MLP) architecture was chosen for this purpose due to its 

wide use in hydrologic modellings. The models were trained based on Levenberg-Marquardt 

algorithm. ANN models showed higher correlation compared to MR models indicating that ANN is 
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more capable of finding the pattern and trend of the observations compared to MR models. Also, 

ANN models generally showed lower errors and are more reliable for prediction purposes.  

After calibrating and validating the models they were tested on out-of-sample sets. It was found that 

generalization ability of MR models for east Victoria is very poor compared to the other two regions 

and also compared to ANN. ANN was able to perform out of sample test with correlation coefficient 

of 0.42~0.93 for east Victoria, 0.68~0.85 for central Victoria and 0.58~0.97 for west Victoria. 

Multiple regression models were compatible with ANN in two stations of Daylesford and Kaniva in 

central and west Victoria with correlation coefficient of 0.92 and 0.67 respectively. Although the 

effect of ENSO and IOD in Victoria is quite weak, however with the use of combined lagged ENSO-

IOD sets in nonlinear ANN and linear multiple regression analysis, long term rainfall forecast can be 

achieved.  
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Table1. Pearson correlation (r) of lagged climate indices and spring rainfall   

Region Station Lagged climate indices   
Nino34(Jun) Nino34(Jul) Nino34(Aug) SOI(Jun) SOI(Jul) SOI(Aug) DMI(Jun) DMI(Jul) DMI(Aug) 

East Bruthen -0.20b -0.25a -0.28a --- --- --- -0.25a --- --- 
Buchan -0.22b -0.26a -0.24b -0.20b --- --- -0.30a --- --- 
Orbost --- -0.24b -0.26a --- --- --- -0.29a -0.21b --- 

Centre Malmsbury -0.22b -0.22b -0.29a --- 0.32a 0.30a --- -0.30a -0.31a 

Daylesford -0.30a -0.28a -0.33a 0.20b 0.37a 0.34a --- -0.29a -0.28a 

Heathcote -0.30a -0.30a -0.38a --- 0.36a 0.39a --- -0.25a -0.28a 

West Horsham -0.22b -0.23b -0.31a ---- 0.26a 0.25a --- -0.28a -0.31a 

Kaniva -0.32a -0.32a -0.36a 0.23b 0.33a 0.31a --- -0.30a -0.31a 

Rainbow -0.31a -0.31a -0.36a 0.20b 0.33a 0.33a --- -0.25a -0.26a 

a: correlation is significant at the 0.01% level 
b: correlation is significant at the 0.05% level 
 

Table



Table2. Multiple regression model sets developed for each station 

 Nino3.4-DMI SOI-DMI 

Bruthen Jun-Jun, Jul-Jun, Aug-Jun -------- 
Buchan Jun-Jun, Jul-Jun, Aug-Jun Jun-Jun 
Orbost  Jul-Jun, Jul-Jul, Aug-Jun, Aug-Jul,  -------- 
Malmsbury Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 
Daylesford Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 
Heathcote Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 
Horsham Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 
Kaniva Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 
Rainbow Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug Jun-Jul, Jun-Aug, Jul-Jul, Jun-Aug, Aug-Jul, Aug-Aug 

 

Table



Table3. Summary of the best regression models 

Region Station Models Coefficient    R VIF DW 

Const. Nino34(Jun) Nino34(Jul) Nino34(Aug) SOI(Jun) SOI(Jul) SOI(Aug) DMI(Jun) DMI(Jul) DMI(Aug)    

East Bruthen Ni34(Jul)-DMI(Jun) 0.65 --- -0.24 --- --- --- --- -0.24 --- --- 0.32 1.10 1.90 
Buchan Ni34(Jul)-DMI(Jun) 0.51 --- -0.17 --- --- --- --- -0.23 --- --- 0.35 1.10 2.10 
Orbost Ni34(Aug)-DMI(Jun) 0.56 --- --- -0.20 --- --- --- -0.27 --- --- 0.35 1.10 2.00 

Centre Malmsbury Ni34(Aug)-DMI(Jul) 0.55 --- --- -0.20 --- --- --- --- -0.22 --- 0.36 1.12 1.90 
Daylesford Ni34(Jun)-DMI(Jul) 0.62 -0.25 --- --- --- --- --- --- -0.29 --- 0.37 1.10 1.81 
Heathcote Ni34(Jun)-DMI(Aug) 0.60 -0.29 --- --- --- --- --- --- --- -0.24 0.37 1.10 1.80 

West Horsham Ni34(Aug)-DMI(Jul) 0.55 --- --- -0.24 --- --- --- --- -0.20 --- 0.36 1.12 2.00 
Kaniva Ni34(Jun)-DMI(Jul) 0.67 -0.32 --- --- --- --- --- --- -0.27 --- 0.39 1.10 2.00 

Rainbow Ni34(Aug)-DMI(Jun) 0.56 -0.29 --- --- --- --- --- --- --- -0.20 0.36 1.10 2.25 

 

Table



Table 4. Performance of the regression models 

Region Station R MSE MAE 
East Bruthen 0.32 0.048 0.171 

 Buchan 0.35 0.026 0.171 
 Orbost 0.35 0.038 0.157 

Centre Malmsbury 0.36 0.030 0.140 
 Daylesford 0.37 0.039 0.155 
 Heathcote 0.37 0.035 0.153 

West Horsham 0.36 0.033 0.149 
 Kaniva 0.39 0.041 0.163 
 Rainbow 0.36 0.031 0.142 

 

Table



Table 5. Performance of ANN models 

Region Station Model R MSE MAE 
East Bruthen Ni34-DMI 0.75 0.023 0.120 

 Buchan Ni34-DMI 0.65 0.028 0.154 
 Orbost SOI-DMI 0.64 0.034 0.145 

Centre Malmsbury Ni34-DMI 0.54 0.034 0.130 
 Daylesford Ni34-DMI 0.36 0.039 0.168 
 Heathcote SOI-DMI 0.52 0.044 0.158 

West Horsham Ni34-DMI 0.64 0.023 0.193 
 Kaniva SOI-DMI 0.56 0.042 0.158 
 Rainbow SOI-DMI 0.53 0.023 0.115 

 

Table



Table 6. Performance of ANN and multiple regression models for the out-of-sample test set 

Region Station ANN  Regression 
  R MSE MAE  R MSE MAE 

East Bruthen 0.93 0.018 0.120  -0.99 0.016 0.085 
 Buchan 0.76 0.008 0.080  -0.90 0.023 0.180 
 Orbost 0.42 0.015 0.107  -0.99 0.024 0.150 

Centre Malmsbury 0.68 0.007 0.080  0.48 0.013 0.100 
 Daylesford 0.85 0.033 0.164  0.92 0.043 0.205 
 Heathcote 0.71 0.018 0.125  -0.50 0.026 0.158 

West Horsham 0.80 0.009 0.080  0.25 0.030 0.149 
 Kaniva 0.97 0.013 0.110  0.67 0.051 0.163 
 Rainbow 0.58 0.017 0.128  -0.74 0.029 0.142 

 

Table



Table 7. Index of agreement (d) for the out-of-sample test set 

Station Regression ANN 

Bruthen 0.26 0.47 
Buchan 0.30 0.78 
Orbost 0.00 0.62 
Malmsbury 0.50 0.56 
Daylesford 0.40 0.68 
Heathcote 0.43 0.54 
Horsham 0.41 0.89 

Kaniva 0.44 0.82 
Rainbow 0.33 0.41 

 

 

Table



 

Figure 1. Map of the study area 
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Figure 2.  A typical ANN architecture 
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Figure 3. Comparing ANN modelling with MR modelling for east Victoria 
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Figure 4. Comparing ANN modelling with MR modelling for central Victoria 
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Figure 5. Comparing ANN modelling with MR modelling for west Victoria 
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